If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-4x+48=60
We move all terms to the left:
x^2-4x+48-(60)=0
We add all the numbers together, and all the variables
x^2-4x-12=0
a = 1; b = -4; c = -12;
Δ = b2-4ac
Δ = -42-4·1·(-12)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-8}{2*1}=\frac{-4}{2} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+8}{2*1}=\frac{12}{2} =6 $
| 6(5)x=134 | | -8=v+1 | | 10+10+10+2a+3a=180 | | x^2-4x+48=180 | | 10+10+10+3a+3a=180 | | -2.3x-(4.2x=66.3 | | 1=-1u-4 | | 52/10+3/7(28)=a | | -35=1-4u | | -2y+1=1y-(-5) | | 7=a2+10 | | a/12=1/2 | | -63=-12d | | -2y+1=y-(-5) | | 7=2a+10 | | 4i+6+3=18 | | 3=b/5 | | 5x(3x+2)=7x(5x-2) | | -8(y+1)=8 | | -1g+1=6 | | 2x-5/4x-7=x+3/2x+5 | | (x-33)+142=180 | | -5=3n-2 | | 6=-3(d+2 | | 2-3n=-5 | | 5(2f-5)=10 | | (19x+3)=8x+14 | | 6=-3(d=2) | | 8=v/9+1 | | 6=-3(d=2 | | 8x-14=-2+10x | | -2b=2=4 |